RINCIPLES OF OPERATING SYSTEMS

Lecture- 19

File
Access methods

13.3

Attributes of a File

Name — only information kept in human-readable form
0 Identifier — unique tag (number) identifies file within file system
= Type — needed for systems that support different types
o Location — pointer to file location on device
- Size — current file size
0 Protection — controls who can do reading, writing, executing

= Time, date, and user identification — data for protection, security, and
usage monitoring

o Information about files is kept in the directory structure, which Is
maintained on the disk.

13.4

File operations

A file is an abstract data type. It can be defined by operations:

Create a file

Write a file

Read a file

Reposition within file -file seek
Delete a file

Truncate a file

Open(Fi): search the directory structure on disk for entry Fi, and move the
content of entry to memory.

Close(Fi):move the content of entry Fi in memory to directory structure on
disk.

13.5

Types of File

File Type
Executable

Object
Source codec,
Batch

text

Print, view
archive
Library

Possible extension Function
Exe,com,bin Machine language program
Obj, 0 Compiled machine lang.,not linked
CC, p, java, Source code in variouslanguages
Bat, sh Commands to commandinterpreter
Txt, doc Textual data, documents
ps, dvi, gif ASCII or binary file

Arc, zip, tar Group of files, sometimes compressed
Lib, a Libraries of routines

When we design a file, the important issue is how we
will retrieve information (a specific record) from the
file. Sometimes we need to process records one after
another, whereas sometimes we need to access a
specific record quickly without retrieving the preceding
records. The access method determines how records can
be retrieved: sequentially or randomly.

13.6

Sequential access

If we need to access a file sequentially—that Is, one record
after another, from beginning to end—we use a sequential
file structure.

Random/Direct/Relative access

If we need to access a specific record without having to
retrieve all records before it, we use a file structure that
allows random access. Two file structures allow this: indexed
files and hashed files. This taxonomy of file structures is
shown in Figure 13.1.

13.7

Files

Sequential Random
access access

O Sequential file O Indexed file
O Hashed file

Figure 13.1 A taxonomy of file structures

13.8

13-2 SEQUENTIAL FILES

A sequential file i1s one in which records can only be
accessed one after another from beginning to end.
Figure 13.2 shows the layout of a sequential file.
Records are stored one after another iIn auxiliary
storage, such as tape or disk, and there iIs an EOF (end-
of-file) marker after the last record. The operating
system has no information about the record addresses, It
only knows where the whole file Is stored. The only
thing known to the operating system is that the records
are sequential.

13.9

13.10

oo e e e ® 0 0 oo

Record

Record Record Record

EOF

Sequential file

Figure 13.2 A sequential file

Algorithm 13.1 shows how records in a sequential file
are processed.

Algorithm 13.1 Pseudocode for processing records in a sequential file

Algorithm: SequentialFileProcessing (file)

Purpose: Process all records in a sequential file

Pre: Given the beginning address of the file on the auxiliary storage
Post: None

Return: None

{
while (Not EOF)
{
Read the next record from the auxiliary storage into memory
Process the record
}
}

13.11

Updating sequential files

Sequential files must be updated periodically to reflect
changes In Iinformation. The updating process IS very
Involved because all the records need to be checked and

updated (if necessary) sequentially.

Files involved in updating

There are four files associated with an update program: the
new master file, the old master file, the transaction file
and the error report file. All these files are sorted based on
key values. Figure 13.3 Is a pictorial representation of a
sequential file update.

13.12

Transaction file 0Old master file

Transaction D
record

Old master
record

Update
program

Error
report file

New master
record

Becomes

New master file

Figure 13.3 Updating a sequential file

13.13

Processing file updates

To make the updating process efficient, all files are sorted on
the same key. This updating process is shown in Figure 13.4.

A: add
D: delete
C: change

Transaction

file file

10 |13 {14 (16 (17 |18 20 |22 |23 [25|31 |35

New master file

Figure 13.4 Updating process

13.14

To access a record in a file randomly, we need to know

the address of the record.

Record
Addresses ------ = o
[xey [adoress | :
. . Address .
Key m— . . — . |m—) Reccord
L] L] .
Index
k

File
Figure 13.5 Mapping in an indexed file

13.15

13.16

166702

Index
Key Addr.
045128 306
070918 001
121267 002
160252 305
—>| 166702 003
s
378845 007
379452 000

Accessing indexed file

003

Addr.
000
001
002
003

007

305
306

Data file

Key Name Balance
379452 | Mary Dodd 1432.45
070918 | Sarah Trapp 100.22
121267 | Bryan Devaux 11.45
166702 | Harry Eagle 14321.00
X

378845 | John Carver 7234.01
'y

160252 | Tuan Ngo 15121.10

045128 | Shouli Feldman 87922.05
|

166702 Harry Eagle 14321.00
Extracted record

Figure 13.6 Logical view of an indexed file

A hashed file uses a mathematical function to
accomplish this mapping. The user gives the key, the
function maps the key to the address and passes It to the

operating system, and the record Is retrieved (Figure
13.7).

Record

Addresses -----------4 .

) Address 2
Key Address = HashFunction (Key) [— R ccord

Mapping k

File

Figure 13.7 Mapping in a hashed file

13.17

Hashing methods

For key-address mapping, we can select one of several
hashing methods. We discuss a few of them here.

Direct hashing

In direct hashing, the key Is the data file address without any
algorithmic manipulation. The file must therefore contain a
record for every possible key. Although situations suitable
for direct hashing are limited, it can be very powerful,
because It guarantees that there are no synonyms or
collisions (discussed later in this chapter), as with other
methods.

13.18

13.19

Addr.

001

002

003

0o > Addr «— Key |2 ™
Key | Addr L

Hash function 025

099
100

Accessing direct-hashed file

Key Name Balance
001 | Mary Dodd 1432.45
002 | Sarah Trapp 100.22
003 | Bryan Devaux 11.45
004 | Harry Eagle 14321.00
025 | John Carver 7234.01
099 | Tuan Ngo 15121.10
100 | Shouli Feldman | 87922.05

Data file

025 John Carver

7234.01

Extracted record

Figure 13.8 Direct hashing

Modulo division hashing

Also known as division remainder hashing, the modulo
division method divides the key by the file size and uses the
remainder plus 1 for the address. This gives the simple
hashing algorithm that follows, where list_size is the number
of elements in the file. The reason for adding a 1 to the mod
operation result Is that our list starts with 1 instead of O.

address = key mod /ist_size + 1

13.20

13.21

121267
Key

Accessing modulo-division-hashed file

Addr. «— Key mod 307 + 1

Hash function

003
Address

Addr.
001
002

003
004

008

306
307

Key Name Balance
379452 | Mary Dodd 1432.45
070918 | Sarah Trapp 100.22
121267 | Bryan Devaux 11.45
166702 | Harry Eagle 14321.00
378845 | John Carver 7234.01
160252 | Tuan Ngo 15121.10
045128 | Shouli Feldman 87922.05

Data File

121267 Bryan Devaux

11.45

Extracted record

Figure 13.9 Modulo division

Assignment

= Q. What are the attributes of a file and
explain file access methods.

13.22

